On Best Proximity Pair Theorems and Fixed-point Theorems

نویسنده

  • P. S. SRINIVASAN
چکیده

The significance of fixed-point theory stems from the fact that it furnishes a unified approach and constitutes an important tool in solving equations which are not necessarily linear. On the other hand, if the fixed-point equation Tx = x does not possess a solution, it is contemplated to resolve a problem of finding an element x such that x is in proximity to Tx in some sense. Best proximity pair theorems analyze the conditions under which the optimization problem, namely minx∈A d(x,Tx) has a solution. In this paper, we discuss the difference between best approximation theorems and best proximity pair theorems. We also discuss an application of a best proximity pair theorem to the theory of games.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diameter Approximate Best Proximity Pair in Fuzzy Normed Spaces

The main purpose of this paper is to study the approximate best proximity pair of cyclic maps and their diameter in fuzzy normed spaces defined by Bag and Samanta. First, approximate best point proximity points on fuzzy normed linear spaces are defined and four general lemmas are given regarding approximate fixed point and approximate best proximity pair of cyclic maps on fuzzy normed spaces. U...

متن کامل

Best proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces

This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$

متن کامل

Non-Archimedean fuzzy metric spaces and Best proximity point theorems

In this paper, we introduce some new classes of proximal contraction mappings and establish  best proximity point theorems for such kinds of mappings in a non-Archimedean fuzzy metric space. As consequences of these results, we deduce certain new best proximity and fixed point theorems in partially ordered non-Archimedean fuzzy metric spaces. Moreover, we present an example to illustrate the us...

متن کامل

Proximity Point Properties for Admitting Center Maps

In this work we investigate a class of admitting center maps on a metric space. We state and prove some fixed point and best proximity point theorems for them. We obtain some results and relevant examples. In particular, we show that if $X$ is a reflexive Banach space with the Opial condition and $T:Crightarrow X$ is a continuous admiting center map, then $T$ has a fixed point in $X.$ Also, we ...

متن کامل

Best proximity point theorems in Hadamard spaces using relatively asymptotic center

In this article we survey the existence of best proximity points for a class of non-self mappings which‎ satisfy a particular nonexpansiveness condition. In this way, we improve and extend a main result of Abkar and Gabeleh [‎A‎. ‎Abkar‎, ‎M‎. ‎Gabeleh‎, Best proximity points of non-self mappings‎, ‎Top‎, ‎21, (2013)‎, ‎287-295]‎ which guarantees the existence of best proximity points for nonex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003